All rights reserved Please keep the author name: KiwenLau and original blog link :
1.
Introduction
In this blog,
I will explain how to calculate PI using MPI. I implement 3 different methods
to calculate PI, two of them use Trapezoid rule, another one uses Monte Carlo
method. I also compare them with sequential program.
For the
experiment, I use Ubuntu 14.04.1 as the Operating system and OpenMPI 1.6.5 as
the MPI implementation. And, the CPU has 4 physical cores.
All source codes
can be cloned from my GitHub repository:
2.
Using Trapezoid
rule 1
- Analysis
Picture
1 – Trapezoid rule 1
In
picture 1, the radius of the circle is 1. So, the area of
the circle is π, then the area
of the shadow is π/4. (x, y) is on the circle, so x2+y2=1,
in other word, the function of the red part of the circle is as follows:
So,
PI can be calculated trough computing the integral. The approximation of the
integral can be easily calculated using trapezoid rule.
- Implementation
Following
are some initializations:
for (i=rank; i<N; i+=size)
{
x2=d2*i*i;
result+=sqrt(1-x2);
}
First, each
process will calculate a part of the sum:
for (i=rank; i<N; i+=size)
{
x2=d2*i*i;
result+=sqrt(1-x2);
}
Then, sum up all results using MPI_Reduce:
MPI_Reduce(&result, &sum, 1,
MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
Last, process 0 will calculate
PI
pi=4*d*sum;
Details can be
found in the source code: MPI_PI/ Trapezoid1/mpi_pi.c
- Result
I test the code
for 5 times with “np” from 1 to 8. All tests get the same PI.
PI=3.141593
Table
1 shows the execution time.
np
|
Test1
|
Test2
|
Test3
|
Test4
|
Test5
|
Average
|
1
|
0.138324
|
0.135576
|
0.138109
|
0.13765
|
0.138454
|
0.1376226
|
2
|
0.068847
|
0.070167
|
0.069483
|
0.068559
|
0.069432
|
0.0692976
|
3
|
0.05257
|
0.048384
|
0.049324
|
0.051414
|
0.049129
|
0.0501642
|
4
|
0.037132
|
0.039768
|
0.037378
|
0.04228
|
0.039799
|
0.0392714
|
5
|
0.060557
|
0.056813
|
0.057978
|
0.058465
|
0.058904
|
0.0585434
|
6
|
0.052823
|
0.051535
|
0.056545
|
0.050593
|
0.043815
|
0.0510622
|
7
|
0.06313
|
0.03907
|
0.062945
|
0.062601
|
0.06349
|
0.0582472
|
8
|
0.044854
|
0.084504
|
0.05721
|
0.059365
|
0.052478
|
0.0596822
|
Table 1 –
Trapezoid rule 1 execution time
When “np” equals
4, the number of CPU cores, the code runs the fastest.
3.
Using Trapezoid
rule 2
- Analysis
Picture
2 – Trapezoid rule 2
In picture 2,
the function of the curve is:
The area of the shadow is the integral of
f(x) from 0 to 1:
- Implementation
Following
are some initializations:
#define N 1E7
#define d 1E-7
#define d2 1E-14
MPI_Comm_rank
(MPI_COMM_WORLD, &rank);
MPI_Comm_size
(MPI_COMM_WORLD, &size);
First, each
process will calculate a part of the sum:
for (i=rank; i<N; i+=size)
{
x2=d2*i*i;
result+=1.0/(1.0+x2);
}
Then, sum up all results using MPI_Reduce:
MPI_Reduce(&result, &sum, 1,
MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
Last, process 0 will calculate
PI
pi=4*d*sum;
Details can be
found in the source code: MPI_PI/ Trapezoid2/mpi_pi.c
- Result
I test the code
for 5 times with “np” from 1 to 8. All tests get the same PI.
PI=3.141593
Table
2 shows execution time.
np
|
Test1
|
Test2
|
Test3
|
Test4
|
Test5
|
Average
|
1
|
0.13981
|
0.13833
|
0.139757
|
0.13845
|
0.140403
|
0.13935
|
2
|
0.070451
|
0.069965
|
0.070183
|
0.070751
|
0.071339
|
0.0705378
|
3
|
0.049448
|
0.052946
|
0.051671
|
0.047731
|
0.052426
|
0.0508444
|
4
|
0.040811
|
0.040441
|
0.03904
|
0.036853
|
0.036466
|
0.0387222
|
5
|
0.057964
|
0.060933
|
0.060975
|
0.062817
|
0.059873
|
0.0605124
|
6
|
0.039066
|
0.046236
|
0.051338
|
0.049921
|
0.052602
|
0.0478326
|
7
|
0.060012
|
0.069322
|
0.06014
|
0.04282
|
0.07605
|
0.0616688
|
8
|
0.06458
|
0.029466
|
0.054937
|
0.06015
|
0.048682
|
0.051563
|
Table 2 –
Trapezoid rule 2 execution time
When “np” equals
4, the number of CPU cores, the code runs the fastest.
4.
Using Monte Carlo
method
Ø Analysis
Picture
3 – Monte Carlo method
In picture 3,
the area of the square is 1 while he area of
the shadow is π/4. If we randomly pick up a large number of points in the
square and only count the number of points inside the shadow. Assume total
number of points is N while the number of points inside the shadow is M. Then:
So:
- Implementation
Following are some initializations:
#define N 1E8
#define d 1E-8
MPI_Comm_rank
(MPI_COMM_WORLD, &rank);
MPI_Comm_size
(MPI_COMM_WORLD, &size);
First, each process will calculate
a part of the sum:
for (i=rank; i<N; i+=size)
{
x=rand()/(RAND_MAX+1.0);
y=rand()/(RAND_MAX+1.0);
if(x*x+y*y<1.0)
result++;
}
Then, sum up all results using MPI_Reduce:
MPI_Reduce(&result, &sum, 1,
MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
Last, process 0 will calculate
PI
pi=4*d*sum;
Details can be
found in the source code: MPI_PI/ Montecarlo/mpi_pi.c
- Result
I test the code
for 5 times with “np” from 1 to 8.
Table
3 shows the value of PI:
np
|
Test1
|
Test2
|
Test3
|
Test4
|
Test5
|
Average
|
1
|
3.1418
|
3.1417
|
3.1415
|
3.1416
|
3.1416
|
3.1416
|
2
|
3.1416
|
3.1416
|
3.1416
|
3.1416
|
3.1417
|
3.1416
|
3
|
3.1411
|
3.142
|
3.1418
|
3.1414
|
3.1417
|
3.1416
|
4
|
3.1416
|
3.142
|
3.1416
|
3.1411
|
3.142
|
3.1417
|
5
|
3.1421
|
3.142
|
3.1424
|
3.1416
|
3.1414
|
3.1419
|
6
|
3.1413
|
3.1418
|
3.1415
|
3.1417
|
3.1417
|
3.1416
|
7
|
3.1417
|
3.1416
|
3.1415
|
3.141
|
3.1416
|
3.1415
|
8
|
3.1411
|
3.1413
|
3.1421
|
3.142
|
3.1409
|
3.1415
|
Table 3 –
Monte Carlo method PI value
Table
4 shows execution time:
np
|
Test1
|
Test2
|
Test3
|
Test4
|
Test5
|
Average
|
1
|
1.961464
|
1.967849
|
1.962504
|
1.974828
|
1.965518
|
1.9664326
|
2
|
0.998715
|
0.980131
|
0.994609
|
0.989492
|
0.986302
|
0.9898498
|
3
|
0.66601
|
0.667706
|
0.668889
|
0.666878
|
0.665649
|
0.6670264
|
4
|
0.502049
|
0.503426
|
0.509393
|
0.508674
|
0.49901
|
0.5045104
|
5
|
0.633725
|
0.615059
|
0.65566
|
0.678822
|
0.558259
|
0.628305
|
6
|
0.665554
|
0.674438
|
0.727003
|
0.587375
|
0.663797
|
0.6636334
|
7
|
0.582889
|
0.597576
|
0.61121
|
0.657734
|
0.582026
|
0.606287
|
8
|
0.578283
|
0.529796
|
0.585216
|
0.542904
|
0.576989
|
0.5626376
|
Table 4 –
Monte Carlo method execution
time
When “np” equals
4, the number of CPU cores, the code runs the fastest.
5.
Compare with
sequential program
I also implement
the sequential program for calculating PI with three different methods.
Details of the
sequential program can be found in the source code:
MPI_PI/ Trapezoid1/sequential/pi.c
MPI_PI/ Trapezoid2/sequential/pi.c
MPI_PI/ Montecarlo/sequential/pi.c
I test the
code for 5 times.
Table 5 shows execution time:
Test1
|
Test2
|
Test3
|
Test4
|
Test5
|
Average
|
|
Trapezoid
1
|
0.136861
|
0.138335
|
0.137984
|
0.136689
|
0.137343
|
0.1374424
|
Trapezoid
2
|
0.138011
|
0.138736
|
0.138747
|
0.137833
|
0.13992
|
0.1386494
|
Monte
Carlo
|
1.860186
|
1.910956
|
1.860795
|
1.867981
|
1.863835
|
1.8727506
|
Table 5 –
Sequential program execution
time
Table
6 shows the speedup of MPI program:
Sequential
|
MPI
(np=4)
|
Speedup
|
|
Trapezoid
1
|
0.1374424
|
0.0392714
|
3.499809021
|
Trapezoid
2
|
0.1386494
|
0.0387222
|
3.580617837
|
Monte
Carlo
|
1.8727506
|
0.5045104
|
3.712015847
|
Table 6 –
Compare MPI and sequential
program
According to
Amdahl’s Law, the maximum speedup using 4 processors is 4, so the result shows all
the MPI program get a good speedup.
6.
MPICH vs OpenMPI
MPI is a
standard and it has several implementations, including MPICH and OpenMPI. As I
mentioned before, I use OpenMPI 1.6.5 for all the tests. But in fact, I also
run all programs using MPICH 3.04 and find some interesting things.
I test the code
for 5 times with “np” from 1 to 8 using MPICH 3.04.
Table
7 shows the average execution time using MPICH compared with using OpenMPI:
np
|
Trapezoid
1
|
Trapezoid
2
|
Monte
Carlo
|
|||
OpenMPI
|
MPICH
|
OpenMPI
|
MPICH
|
OpenMPI
|
MPICH
|
|
1
|
0.1376226
|
0.0452836
|
0.13935
|
0.0392522
|
1.9664326
|
1.8396306
|
2
|
0.0692976
|
0.022972
|
0.0705378
|
0.0203664
|
0.9898498
|
0.9244602
|
3
|
0.0501642
|
0.015644
|
0.0508444
|
0.0146466
|
0.6670264
|
0.6115258
|
4
|
0.0392714
|
0.0126114
|
0.0387222
|
0.0122344
|
0.5045104
|
0.4694174
|
5
|
0.0585434
|
0.0259696
|
0.0605124
|
0.0342758
|
0.628305
|
0.7133318
|
6
|
0.0510622
|
0.0374954
|
0.0478326
|
0.0327896
|
0.6636334
|
0.694501
|
7
|
0.0582472
|
0.0588336
|
0.0616688
|
0.0423222
|
0.606287
|
0.647828
|
8
|
0.0596822
|
0.0435324
|
0.051563
|
0.0505938
|
0.5626376
|
0.6022956
|
Table 7 –
Compare OpenMPI and MPICH
From Table 7, we
can see that MPICH almost outperforms OpenMPI in every case. This is very
impressive.
Table
8 shows the average execution time of MPICH (np=1), OpenMPI (np=1) and
sequential program.
OpenMPI (np=1)
|
MPICH (np=1)
|
Sequential
|
|
Trapezoid
1
|
0.1376226
|
0.0452836
|
0.1374424
|
Trapezoid
2
|
0.13935
|
0.0392522
|
0.1386494
|
Monte
Carlo
|
1.9664326
|
1.8396306
|
1.8727506
|
Table 8 –
Compare OpenMPI, MPICH and
sequential program
From Table 8, we
can find that MPICH (np=1) even run faster than sequential program! Maybe MPICH
has a more efficient compiler, or this is caused by some other reason.
7.
Conclusion
thanks a lot. The sequential part is not on git though..
ReplyDeleteivanka trump hot pictures
ReplyDeleteThanks for sharing the useful information.
ReplyDeleteAntalya
ReplyDeleteKonya
Adana
Ankara
Van
EG8HC8
Denizli
ReplyDeleteKonya
Denizli
ısparta
Bayburt
45M7OU
amasya
ReplyDeletesinop
çorum
sakarya
van
GH7W
goruntulu show
ReplyDeleteücretli
UDFYV
https://titandijital.com.tr/
ReplyDeleteşırnak parça eşya taşıma
karabük parça eşya taşıma
yozgat parça eşya taşıma
samsun parça eşya taşıma
S1A68
ankara parça eşya taşıma
ReplyDeletetakipçi satın al
antalya rent a car
antalya rent a car
ankara parça eşya taşıma
WZ8FF
Antep Lojistik
ReplyDeleteYalova Lojistik
Erzincan Lojistik
Tekirdağ Lojistik
Elazığ Lojistik
USE
amasya evden eve nakliyat
ReplyDeleteeskişehir evden eve nakliyat
ardahan evden eve nakliyat
manisa evden eve nakliyat
karaman evden eve nakliyat
EJEBZC
izmir evden eve nakliyat
ReplyDeletemalatya evden eve nakliyat
hatay evden eve nakliyat
kocaeli evden eve nakliyat
mersin evden eve nakliyat
H2E
70F06
ReplyDeleteMuş Parça Eşya Taşıma
Kırklareli Evden Eve Nakliyat
Aksaray Evden Eve Nakliyat
Mersin Evden Eve Nakliyat
Amasya Parça Eşya Taşıma
79CB7
ReplyDeleteKonya Evden Eve Nakliyat
Siirt Evden Eve Nakliyat
Kırklareli Evden Eve Nakliyat
Ankara Evden Eve Nakliyat
Kırşehir Evden Eve Nakliyat
60190
ReplyDeleteUrfa Şehirler Arası Nakliyat
Trabzon Şehirler Arası Nakliyat
Ünye Oto Elektrik
Balıkesir Şehir İçi Nakliyat
Eskişehir Evden Eve Nakliyat
Manisa Şehir İçi Nakliyat
Pursaklar Boya Ustası
Balıkesir Lojistik
Sinop Parça Eşya Taşıma
EB59E
ReplyDeleteKaraman Lojistik
Karabük Şehirler Arası Nakliyat
Van Şehir İçi Nakliyat
Aydın Lojistik
Yenimahalle Boya Ustası
Hakkari Parça Eşya Taşıma
Uşak Evden Eve Nakliyat
Eskişehir Lojistik
Ağrı Evden Eve Nakliyat
356EE
ReplyDeleteKarapürçek Boya Ustası
Elazığ Lojistik
Tekirdağ Çatı Ustası
Çerkezköy Korkuluk
Tokat Şehirler Arası Nakliyat
AAX Güvenilir mi
Tekirdağ Şehirler Arası Nakliyat
Diyarbakır Parça Eşya Taşıma
Bitmart Güvenilir mi
AA1FB
ReplyDeleteAfyon Parça Eşya Taşıma
Ünye Televizyon Tamircisi
Siirt Lojistik
Ankara Fayans Ustası
Kütahya Lojistik
İzmir Lojistik
Niğde Parça Eşya Taşıma
Karabük Şehir İçi Nakliyat
Kastamonu Lojistik
6DF9F
ReplyDelete%20 referans kodu
B6D78
ReplyDeletebinance referans kodu %20
8E5C7
ReplyDeleteyabancı görüntülü sohbet
kırklareli ucretsiz sohbet
zonguldak canlı sohbet odaları
Afyon Yabancı Sohbet
osmaniye canli sohbet bedava
kütahya sesli sohbet sesli chat
kırıkkale canlı görüntülü sohbet odaları
canlı sohbet sitesi
sakarya yabancı canlı sohbet
7AE89
ReplyDeleteBolu Parasız Sohbet
urfa rastgele sohbet odaları
Kastamonu Bedava Görüntülü Sohbet Sitesi
Nevşehir Canlı Görüntülü Sohbet
elazığ ücretsiz sohbet
mersin canlı sohbet et
tekirdağ tamamen ücretsiz sohbet siteleri
kırklareli rastgele görüntülü sohbet ücretsiz
rastgele görüntülü sohbet ücretsiz
35267
ReplyDeleteadıyaman görüntülü sohbet odaları
ığdır görüntülü sohbet uygulama
rastgele görüntülü sohbet
Sivas Sesli Sohbet Siteleri
Kırklareli Ücretsiz Sohbet Uygulaması
sesli sohbet mobil
tunceli sohbet muhabbet
tunceli rastgele canlı sohbet
Muğla Kadınlarla Görüntülü Sohbet
9A294
ReplyDeleteBinance Para Kazanma
Telegram Abone Satın Al
Binance Referans Kodu
Sonm Coin Hangi Borsada
Sohbet
Threads İzlenme Satın Al
Periscope Beğeni Hilesi
Binance Nasıl Oynanır
Btcst Coin Hangi Borsada
7CBD9
ReplyDeleteBinance Komisyon Ne Kadar
Shinja Coin Hangi Borsada
Binance Hesap Açma
Tumblr Takipçi Satın Al
Cate Coin Hangi Borsada
Twitch İzlenme Hilesi
Coin Nasıl Üretilir
Threads Yeniden Paylaş Satın Al
Telegram Abone Satın Al
D7024
ReplyDeletedebank
uniswap
poocoin
pancakeswap
shapeshift
yearn finance
dappradar
layerzero
DefiLlama
498EE4E205
ReplyDeletetelegram sanal şov
شركة عزل اسطح بالجبيل BA1x59BSq4
ReplyDeleteشركة تنظيف سجاد بخميس مشيط PwwtEKo19f
ReplyDelete386C6E943B
ReplyDeletetwitter takipçi
B59512B729
ReplyDeletetakipçi satın al
24AA6B5888
ReplyDeletetakipçi fiyat